

SYDNEY BOYS HIGH SCHOOL

2019

YEAR 12 TRIAL HSC ASSESSMENT TASK

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using **black** pen
- NESA approved calculators may be used
- A reference sheet is provided with this paper
- Marks may NOT be awarded for messy or badly arranged work
- In Questions 11–16, show ALL relevant mathematical reasoning and/or calculations

Total Marks: 100

Section I - 10 marks (pages 2-5)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 6-14)

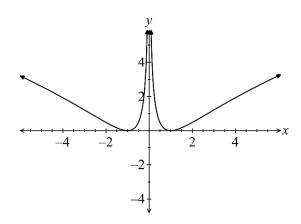
- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Examiner:

S.G.

Section I

10 marks


Attempt Questions 1 – 10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1. The relation $(z+2)(\overline{z}+2)=4$, when graphed on an Argand diagram, would be a:
 - (A) circle of radius 4 with centre at (-2,0)
 - (B) circle of radius 2 with centre at (-2,0)
 - (C) circle of radius 4 with centre at (2,0)
 - (D) circle of radius 2 with centre at (2,0)
- 2. The cubic equation $2x^3 8x^2 + px 12 = 0$ has roots α , β and γ . Given that $\alpha^2 + \beta^2 + \gamma^2 = 13$, what is the value of p?
 - (A) 3
 - (B) -3
 - (C) $\frac{3}{2}$
 - (D) $-\frac{3}{2}$
- 3. Which of the following is an expression for $\int xe^{-x} dx$?
 - (A) $-xe^{-x} \int e^{-x} dx$
 - (B) $-xe^{-x} + \int e^{-x} dx$
 - (C) $xe^{-x} \int e^{-x} dx$
 - (D) $xe^{-x} + \int e^{-x} dx$

4. Which of the following could be the equation of this curve?

- (A) $y = \log_e(x^2)$
- (B) $y = \left[\log_e(x)\right]^2$
- (C) $y = \left| \log_e(x) \right|$
- (D) $y = (\log_e |x|)^2$
- 5. The numbers x, y and z are purely imaginary.

Which of the following must always be true?

- (A) $x^2 + y^2 + z^2 \ge 0$
- (B) $x^5 y^{10} z^{15} \ge 0$
- (C) $x^2y^2 + x^2z^2 + y^2z^2 \ge 0$
- (D) $x^6 y^{12} z^{16} \ge 0$

- 6. $\int \frac{2x}{(x+1)(x+3)} dx$ is equal to:
 - (A) $\int \left(\frac{3}{x+3} \frac{1}{x+1}\right) dx$
 - (B) $\int \left(\frac{3}{x+3} \frac{3}{x+1}\right) dx$
 - (C) $\int \left(\frac{3}{x+3} + \frac{1}{x+1}\right) dx$
 - (D) $\int \left(\frac{3}{x+3} + \frac{3}{x+1}\right) dx$
- 7. An archer finds that on average he hits the bullseye four times out of five.

 If he fires four arrows, what is the probability that he will miss the bullseye at least 3 times?
 - (A) 0.0016
 - (B) 0.0272
 - (C) 0.512
 - (D) 0.8192
- 8. The horizontal line y = -k, where k is a positive integer, intersects the curve $y = \log_2 x$ at different points according to the values of k. What is the limiting sum of the x-coordinates of all the points of intersection?
 - (A) $\frac{1}{2}$
 - (B) 1
 - (C) 2
 - (D) 4

9. The equation $P(x) = 3x^3 - 4x^2 + 2x - 7$ has zeroes α , β and γ . Which equation has roots $\alpha + 2$, $\beta + 2$ and $\gamma + 2$?

(A)
$$3x^3 - 22x^2 + 54x - 51 = 0$$

(B)
$$3x^3 - 10x^2 + 30x + 51 = 0$$

(C)
$$3x^3 - 8x^2 + 8x - 56 = 0$$

(D)
$$24x^3 - 16x^2 + 4x - 7 = 0$$

10. If $x = \tan \theta$ and $y = \frac{1}{2} \sin 2\theta$, which of the following is an expression for $\frac{dy}{dx}$?

(A)
$$\cos^2 \theta - 2\sin^2 2\theta$$

(B)
$$\cos^2 \theta - \sin^2 2\theta$$

(C)
$$\cos^2 \theta - \frac{1}{2} \sin^2 2\theta$$

(D)
$$\cos^2 \theta - \frac{1}{4} \sin^2 2\theta$$

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section.

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include ALL relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Use a SEPARATE writing booklet.

- a) It is given that z = 3 + 3i and w is a complex number such that |zw| = 12.
- i) Show that $|w| = 2\sqrt{2}$.

2

ii) Given that $arg(w) = -\frac{\pi}{6}$, find w in exact Cartesian form.

2

b)

i) Find real numbers a and b such that $(a+ib)^2 = -3+4i$.

3

ii) Hence solve the equation $z^2 - 3z + (3-i) = 0$.

2

c) Define the polynomial H(x) as $H(x) = ax^3 - 3x^2 - 6x + b$, where a and b are real numbers.

3

Find the values of a and b, given that $(x-1)^2$ is a factor of H(x).

d) Evaluate
$$\int_0^{\frac{\pi}{3}} \frac{3\sec^2 x}{9 + \tan^2 x} dx$$

3

End of Question 11

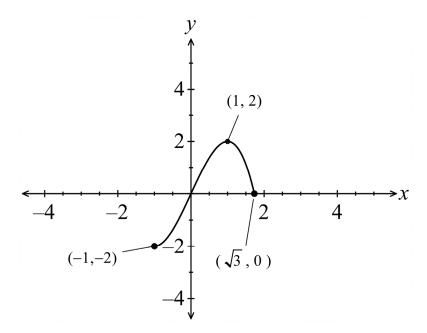
Question 12 (15 marks)

Use a SEPARATE writing booklet

a) Let
$$y = \frac{x^2 - x + 2}{x + 1}$$
.

- i) What are the equations of the asymptotes of the curve?
- ii) Find the coordinates of all the turning points.
- iii) Hence draw a third-page sketch of the curve $y = \frac{x^2 x + 2}{x + 1}$, showing the above information.
- b) Let $z = \cos \theta + i \sin \theta$.
- i) Show that $z^n + z^{-n} = 2\cos n\theta$, n = 1, 2, 3, ...
- ii) Hence show that $4\cos\theta\cos 2\theta\cos 3\theta = 1 + \cos 2\theta + \cos 4\theta + \cos 6\theta$.
- iii) Hence, or otherwise, find $\int \cos x \cos 2x \cos 3x \, dx$.

c)


i) Show that
$$\int_0^a f(x) dx = \int_0^a f(a-x) dx \text{ for all } f(x).$$

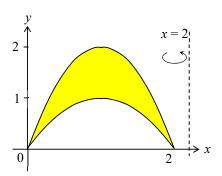
ii) Hence, or otherwise, evaluate $\int_0^2 x (2-x)^n dx$, where n > 0.

End of Question 12

2

- a) Find the gradient of the tangent to the curve $y^2 + xy 1 = 0$ at the point (0,1).
- b) The graph of y = f(x) is shown below.

Draw separate half page diagrams of the graphs of each of the following on the insert provided:


i)
$$y = f(|x-1|).$$

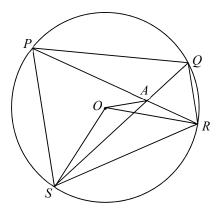
ii)
$$y = [f(x)]^2$$
.

Question 13 continues on page 9

Question 13 (continued)

c) The shaded region bounded by the parabolas $y = 2x - x^2$ and $y = 4x - 2x^2$ between x = 0 and x = 2 is as shown in the diagram.

Use the cylindrical shells method to find the volume of the solid formed when the shaded area is rotated about the line x = 2.


- d) Evaluate $\int_{1}^{49} \frac{dx}{2 + \sqrt{x}}$, leaving your answer in simplest exact form.
- e) Use calculus to show that the following inequality is true for x > -1.

$$x \ge \log_e (1+x)$$

End of Question 13

a) P, Q, R and S are four points on a circle with centre O. PR and SQ meet at the point A such that the quadrilateral OARS is cyclic.

3

Show that PS is parallel to QR.

- b) A particle is fired vertically upwards with initial velocity u metres per second, and is subject to both gravity, g, and air resistance, which is proportional to the square of the velocity v.
- i) Show that the motion of the particle can be represented by $\ddot{x} = -g kv^2$ where k is a positive constant.
- ii) Find the greatest height H reached by the particle.
- iii) By considering a suitable equation of motion, show that the velocity w with which it returns to the point of projection is given by $w^2 = \frac{g}{k} (1 e^{-2kH})$.

Question 14 continues on page 11

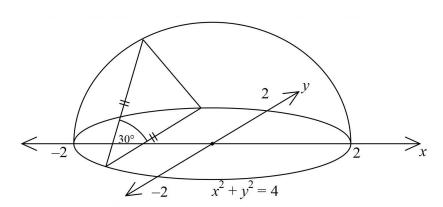
Question 14 (continued)

c) Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \ dx$, where *n* is a non-negative integer.

Show that
$$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \ dx$$
, for $n \ge 2$.

ii) Deduce that
$$I_n = \frac{n-1}{n}I_{n-2}$$
.

iii) Evaluate
$$I_4$$
.


End of Question 14

a) Use mathematical induction to prove that

 $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n} - 1$

for any integer $n \ge 2$.

b) A solid has the region bounded by the circle $x^2 + y^2 = 4$ as its base.

The cross section of the solid above, taken perpendicular to the x-axis, is an isosceles triangle with one of the equal sides lying in the base of the solid and an angle of 30° between the equal sides, as shown.

Find the volume of the solid.

c) Six friends go to a restaurant that serves six different main courses. If each of the friends randomly chooses which meal they have, what is the probability that exactly two of the main course options are not chosen?

3

3

3

Question 15 continues on page 13

Question 15 (continued)

d)

i) Prove that, for any positive integers n and r,

$$\frac{1}{r^{n+r}C_{r+1}} = \frac{r+1}{r} \left(\frac{1}{r^{n+r-1}C_r} - \frac{1}{r^{n+r}C_r} \right).$$

ii) Hence, by expressing $\sum_{n=1}^{\infty} \frac{1}{n+r} C_{r+1}$ as a simplified expression in terms of r, evaluate $\sum_{n=2}^{\infty} \frac{1}{n+2} C_3$.

End of Question 15

Question 16 (15 marks)

Use a SEPARATE writing booklet

a) If a, b and c are positive and unequal, prove that

i)
$$a+b \ge 2\sqrt{ab}$$

ii)
$$(a+b)(b+c)(c+a) > 8abc$$
 2

Question 16 continues on page 15

Question 16 (continued)

b)

i) Use De Moivre's theorem to show that, if $\sin \theta \neq 0$, then 2

$$\frac{\left(\cot\theta+i\right)^{2n+1}-\left(\cot\theta-i\right)^{2n+1}}{2i}=\frac{\sin\left(2n+1\right)\theta}{\sin^{2n+1}\theta},\,$$

for any positive integer n.

Deduce that the solutions of the equation ii)

3

$$\binom{2n+1}{1}x^{n} - \binom{2n+1}{3}x^{n-1} + \dots + (-1)^{n} = 0$$

are

$$x = \cot^2\left(\frac{m\,\pi}{2n+1}\right).$$

where m = 1, 2, ..., n.

Hence show that

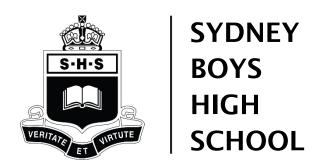
2

$$\sum_{m=1}^{n} \cot^{2} \left(\frac{m \pi}{2n+1} \right) = \frac{n(2n-1)}{3}$$

iv)

iii)

Given that $0 < \sin \theta < \theta < \tan \theta$ for $0 < \theta < \frac{\pi}{2}$, show that


$$\cot^2\theta < \frac{1}{\theta^2} < 1 + \cot^2\theta.$$

v) Hence show that 3

2

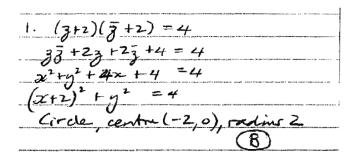
$$\sum_{m=1}^{\infty} \frac{1}{m^2} = \frac{\pi^2}{6} .$$

End of paper

2019

YEAR 12 TRIAL HSC ASSESSMENT TASK

Mathematics Extension 2


SUGGESTED SOLUTIONS

MC QUICK ANSWERS

- **1.** B
- **2.** A
- **3.** B
- **4.** D
- **5.** C
- **6.** A
- **7.** B
- **8.** B
- **9.** A
- **10.** C

X2 Y12 THSC 2019 Multiple choice solutions

Mean (out of 10): 8.72

Α	5
В	111
C	1
D	5

2.
$$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha \beta + \alpha \gamma + \beta \gamma)$$

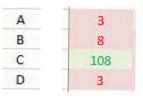
$$13 = 4^{2} - 2 \times \frac{2}{3}$$

$$13 = 16 - p$$

$$p = 3$$
(A)

A	98
В	9
C	15
D	0

3.
$$\int xe^{-x} dx$$
 $u=x$ $v=-e^{-x}$ $u'=1$ $v'=e^{-x}$ $u'=1$ $v'=e^{-x}$ $u'=1$ $v'=e^{-x}$ $u'=1$ $v'=e^{-x}$ $u'=1$ u


A	3
В	119
C	0
D	0

4. A y = 2 loge 2	1 19/2
Wis till 1 to see pages 15 dill till till till till till till till	
B. Domain 20>0	X
III TII STONE TON AND THE THE MENTAL THE STONE AND THE STONE WAS A STONE TO THE STONE	
c. Domain x>0	×
D. Only option lef-	t. aroph is
D. Only option lef- consistent with	expeded
features: Discor	timely A == 0
Zeroes at x = -1	and x=1
range > 0	
A	4
В	0

c. x²y² x²z² y²g² as each he product of nagative number therefore each is positive.

D Similar argument to B X

$\frac{6}{(x+1)(x+3)} \frac{2x}{(x+1)} - \frac{A}{(x+1)} + \frac{B}{x+3}$ $\frac{1}{2x} = A(x+3) + B(x+1)$
26+x=-3:-6=-25 8=3
L+n=-1:-2 ± ZA +=-1
$\frac{2x}{(x+1)(x+3)} = \frac{1}{x+1} + \frac{3}{x+3}$
A 118 B 1 C 2 D 1
7. P(miss of least 3 times) = P(miss 3 times) + P(miss 4 times) = 4C3×0.8×0.2³ + 4C4 0.2⁴ = 0.0272 B
A 2 113 C 2 D 5
8. $\log_{1} x = -k$ $1 \cdot x = 2^{-k}$
$= \frac{1}{2R}$ $Sum = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$
A 7
B 75 C 30 D 10

q. u = 2c + 2	en additi kill o su akin, sala ana ana a or albanesse en	TO SHOULD THE TOTAL BUT AND	ector for 1980-188 firs star side bloom paper-universe
x = 4-Z	II II TEEFRINAND AVINTA EI	t tolt samme "rom-fac collegeratemen	
1.3(u-2)3-4(u-2)	+2(u-	2)-7	20
$3(u^3-3u^2.2+3u.4)$			
+2u-4-7 =	0 '		
:. 3u3-18u2+36u-		4u2+1	6u-16
+2u-11 = 0		= 0	to Mayorine all hills in the proper tiple 1994
			ne pap ay ophid d tillid skillsmanavamet
We would not a first the same of the same	(1)	- No
A	116		
В	5		
C	0		
		ہے کے	30-
10. $\alpha = \tan \theta$ $\frac{d\chi}{d\theta} = \sec^2 \theta$	dy-	- 1 v	2 ess 20
do	ito	= 40	,20
dy = costo	<u> </u>	and the Paris of the same	me commence commence of the set of the first decision from
The sour	<u></u>	and the state of t	
= cos²P	cosi	Lø	
and the second s	de like i kadili di se staperber Marketi	d the sheeper decay becomes	en administration and the Medical Act Microsofter
Using substitutions	, T	- 4	
costo cos20)
A corts -25in 20			A STATE OF THE REAL PROPERTY.
B cor70-sin20	1 6)	<u></u>
c eor20-45in220			
D 60520 - 4510 20-	<u> </u>		CAMBO STATE BY LIVE STATES A STATE OF
	g (chigge and defen as season manager per		(c)
		•	
Confirming:			
$= \frac{\cos^2 \theta - \sqrt{2} \sin^2 \theta}{\cos^2 \theta - \frac{1}{2} (2s)}$. a\?	amad topickytelymm
$= \cos^2 \theta - \frac{1}{2} \times 4$		_	
$= cos^{2}\theta - (1-2)$			
= cor20 cos20			

A B C

D

7

89

18

Question!

a)i)
$$z = 3+3i$$
 $|z| = \sqrt{(3)^2 + (2)^2}$
 $= \sqrt{18}$
 $= 3\sqrt{2}$
 $|zw| = 12$
 $|z| = |w| = 12$
 $|z| = |w| = 2\sqrt{2}$

ii) ang $w = -\frac{\pi}{6}$
 $w = |w| \left(\cos(\arg w) + i\sin(\arg w)\right)$
 $= 2\sqrt{2} \left(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6})\right)$
 $= 2\sqrt{2} \left(\frac{3}{2} + i(-\frac{1}{2})\right)$
 $= \sqrt{6} - \sqrt{2}i$

b) i) $(a+ib)^2 = -3+4i$

equate read & magshary parts
 $a^2 + 2abi - b^2 = -3+4i$

equate read & magshary parts
 $a^2 - b^2 = -3$
 $2ab = 4$
 $(a^2 + b^2)^{\frac{1}{2}} (a^2 - b^2)^{\frac{1}{2}} + (2ab)^{\frac{1}{2}}$

 $= (-3)^2 + (4)^2$

$$a^{2}+b^{2}=5 - 3 \text{ since a,b are real.}$$

$$0+3$$

$$2a^{2}=2$$

$$a=1$$

$$a=\pm 1$$

$$\text{sub into } 0$$

$$2(\pm 1)b=4$$

$$b=\pm 2$$

$$a=1,b=2 \text{ or } a=1,b=-2$$

$$1i) \quad z^{2}-3z+(3-i)=0$$

$$z=-(-3)\pm \sqrt{(-3)^{2}-4(1)(3-i)}$$

$$z=3\pm \sqrt{9-12+4i}$$

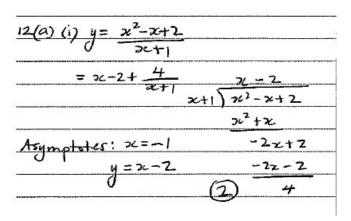
$$z=3\pm \sqrt{1+2i}$$

$$z=3\pm (1+2i)$$

$$z=3+(1+2i)$$

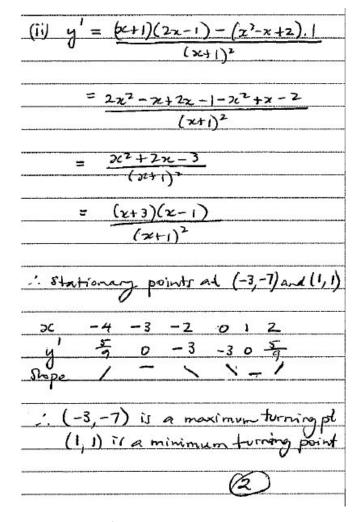
$$z=3+(1+2i)$$

$$z=2+2+i \text{ or } 1-i$$


c)
$$H(x) = ax^{3} - 3x^{2} - 6x + b$$
 $H'(x) = 3ax^{2} - 6x - 6$
 $since (x-1)^{2}$ is a factor of $H(x)$.

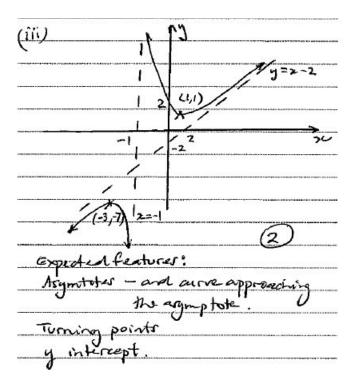
 $x = 1$ is a zero of $H(x) \notin H'(x)$
 $H'(1) = 3a(1)^{2} - 6(1) - 6 = 0$
 $3a - 12 = 0$
 $a = 4$
 $H(1) = a(1)^{3} - 3(1)^{2} - 6(1) + b = 0$
 $b = 9 - a$
 $= 9 - 4$
 $= 9 - 4$
 $= 9 - 4$
 $= 9 - 4$
 $= 4x - 4x$
 $= 4x - 4$

$= tan^{-1}\left(\sqrt{3}\right) - tan^{-1}\left(0\right)$
(3)
6
COMMENTS:
This question was done well by the majority of students the modal mark was 15.
students the modal mark was 15.
Part (c) could have been done using the sum and product of roots.
product of roots.
•
~
<u>, </u>


Ext 2 Y12 THSC 2019 Q12 solutions

Mean (out of 15): 12.29

Most handled this question well. The x=-1 asymptote was well done. Those who didn't identify the y=x-2 asymptote usually had not performed the division to assist the identification.


0	0.5	1	1.5	2	Mean
1	0	21	4	96	1.80

Most students found the stationary points. However, many did not take the extra step and decide if they were turning points. Some of those who tested the gradient on either side of the stationary point did not

take into account the existence of a discontinuity at x=-1 – their testing points should not have spanned the discontinuity. Students are expected to supply a value (or a detailed justification) to indicate whether the gradient id positive or negative, not just write + or -.

0	0.5	1	1.5	2	Mean
0	4	68	16	34	1.33

Many sketches were done well. A common error was not stating the y intercept. When sketching curves with asymptotes, students should draw the asymptotes first and then ensure that their graphs approach the asymptote.

0	0.5	1	1.5	2	Mean
2	2	11	31	76	1.73

(b) (i)
$$3^n + 3^{-n}$$

= $(\cos\theta + i\sin\theta)^n + (\cos\theta + i\sin\theta)^n$
= $\cos n\theta + i\sin n\theta + \cos(-n\theta) + i\sin(-n\theta)$
= $\cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$
= $2\cos n\theta$

Well done.

0	0.5	1	Mean
3	4	115	0.96

(ii)
$$4 \cos \theta \cos 2\theta \cos 3\theta$$

$$= 4 \left(\frac{3+3^{-1}}{2} \times \frac{3^{2}+3^{-2}}{2} \times \frac{3^{3}+3^{-3}}{2} \right)$$

$$= \frac{1}{2} \left(3^{3}+3^{-1}+3^{1}+3^{-3} \right) \left(3^{3}+3^{-3} \right)$$

$$= \frac{1}{2} \left(3^{6}+1+3^{2}+3^{-4}+3^{4}+3^{-2}+1+3^{-6} \right)$$

$$= \frac{1}{2} \left(2+\left(3^{2}+3^{-2} \right)+\left(3^{4}+3^{-4} \right)+\left(3^{4}+3^{-6} \right) \right)$$

$$= \frac{1}{2} \left(2+2\cos 2\theta +2\cos 4\theta +2\cos 6\theta \right)$$

$$= 1+\cos 2\theta +\cos 4\theta +\cos 6\theta$$
(3)

An interesting question which makes use of the result from part (i) in both directions.

0	0.5	1	1.5	2	2.5	3	Mean
23	11	6	0	2	1	79	2.09

(iii)
$$\int \cos x \cos^2 x \cos^3 x dx$$

$$= \frac{1}{4} \int (1 + \cos^2 x + \cos^4 x + \cos^6 x) dx$$

$$= \frac{1}{4} \left(x + \frac{1}{2} \sin^2 x + \frac{1}{4} \sin^4 x + \frac{1}{6} \sin^6 x \right) + C$$

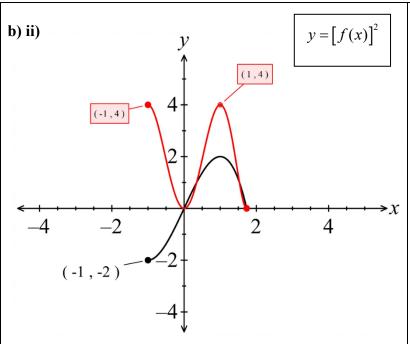
Well done. Some didn't include the multiplier of $\frac{1}{4}$.

0	0.5	1	Mean
4	9	109	0.93

(O(i)
$$\int_0^a f(a-x) dx$$
 Let $u = a-x$
 $du = -dx$
 $= \int_a^a f(u)(-du)$ If $x = 0$, $u = a$
If $x = a$, $u = 0$
 $= \int_0^a f(u) du$
 $= \int_0^a f(x) dx$ (2)

Most who started with the RHS were able to get to the LHS comfortably.

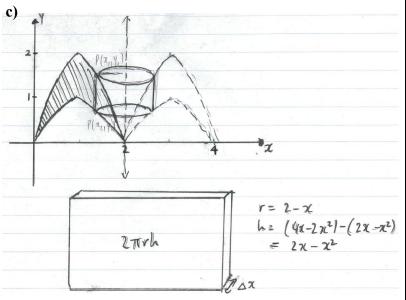
0	0.5	1	1.5	2	Mean
13	4	5	1	99	1.69


(ii)
$$\int_{0}^{2} \chi (2-x)^{n} dx$$

= $\int_{0}^{2} (2-x) \chi^{n} d\chi$
= $\int_{0}^{2} (2 \chi^{n} - \chi^{n+1}) d\chi$
= $\left[\frac{2}{n+1} \chi^{n+1} - \frac{1}{n+2} \chi^{n+2}\right]_{0}^{2}$
= $\left[\frac{2}{n+1} \times 2^{n+1} - \frac{1}{n+2} \chi^{n+2}\right]_{0}^{2}$
= $\left[\frac{1}{n+1} - \frac{1}{n+2} \right]_{0}^{2}$
= $\left[\frac{1}{n+1} - \frac{1}{n+2}\right]_{0}^{2}$

Generally done well.

0	0.5	1	1.5	2	Mean
6	6	2	11	97	1.77


Question 13

Solution	Marking Criteria	Marker's comments
a) $y^{2} + xy - 1 = 0$ $\frac{d(y^{2})}{dy} \frac{dy}{dx} + x \frac{dy}{dx} + \frac{dx}{dx} y + \frac{d(-1)}{dx} = \frac{d(0)}{dx}$ $2y \frac{dy}{dx} + x \frac{dy}{dx} + y = 0$ $\frac{dy}{dx} (2y + x) = -y$ $\frac{dy}{dx} = \frac{-y}{2y + x}$ At (0, 1) $m = -\frac{1}{2 + 0}$ $= -\frac{1}{2}$	1 mark for finding the correct $\frac{dy}{dx}$. 1 mark for finding the correct gradient.	- Most candidates did well in this question as they know to implicit differentiate Few candidates did not read the question properly and went on to find the equation of the line. This is not necessary.
b) i) $y = f(x-1)$ -4 -2 -2 $(-1, -2)$ -4 $(3, 0)$	1.5 marks for the correct graph. 0.5 mark for the critical values labelled.	- This was not done well by many candidates Many candidates shifted the graph to the right and reflected on the y-axis. Candidates did not take the account of the absolute value Only 1 mark was awarded if candidates did the above with correct labelling.

- **1.5 mark** for the correct graph and clear indication of critical values.
- **0.5 mark** showing the 2 intersections of $y = [f(x)]^2$ and y = f(x) due to the steepness created by the "squared".

This question was done really well by majority of the candidates.

1 mark for the correct expression of the volume integral.

1 mark for the correct answer.

Substantial number of candidates lost marks due to:

- Not explicitly writing down the correct expression for 1 shell.
- Careless errors in expanding $(2-x)(2x-x^2)$

$$\Delta V \approx 2\pi r h \delta x$$

$$= 2\pi (2 - x)(2x - x^{2}) \delta x$$

$$V = \lim_{\delta x \to 0} \sum_{x=0}^{2} 2\pi (x^{3} - 4x^{2} + 4x) \delta x$$

$$= 2\pi \int_{0}^{2} x^{3} - 4x^{2} + 4x \, dx$$

$$= 2\pi \left[\frac{x^{4}}{4} - \frac{4x^{3}}{3} + 2x^{2} \right]_{0}^{2}$$

$$= 2\pi \left(\frac{16}{4} - \frac{32}{3} + 8 \right)$$

$$= \frac{8\pi}{3} \text{ units}^{3}$$

$$\int_{1}^{49} \frac{dx}{2 + \sqrt{x}}$$
Let $u = \sqrt{x}$

$$u^{2} = x$$

$$= \int_{1}^{7} \frac{2u}{2 + u} du$$

$$= 2 \int_{1}^{7} \frac{u + 2 - 2}{u + 2} du$$

$$= 2 \int_{1}^{7} 1 - \frac{2}{u + 2} du$$

$$= 2 \left[u - 2 \ln|u + 2| \right]_{1}^{7}$$

$$= 2 \left[(7 - 2 \ln(9)) - (1 - 2 \ln(3)) \right]$$

$$= 2(6 - 2 \ln(3))$$

$$= 12 - 4 \ln(3)$$

1 mark for correct substitution.

1 mark for correct integral after substitution.

1 mark for the correct answer.

The substitution shown in the solution is not the only acceptable substitution, but it made problem easier to work out.

Significant number of candidates rationalized the denominator but were not successful in getting the correct answer.

Some candidates used $x = \tan^4(\theta)$ as their substitution with no success.

e) Let $y = x - \log_e(1 + x)$ for x > -1y is continuous for x > -1

$$\frac{dy}{dx} = 1 - \frac{1}{1+x}$$

$$= \frac{x}{1+x}$$

Let $\frac{dy}{dx} = 0$ to find stationary point(s)

$$0 = \frac{x}{1+x}$$

$$\therefore x = 0$$

When
$$x = 0$$
, $y = 0 - \log_e(1+0)$

 \therefore (0,0) is a stationary pt.

$$\frac{d^2y}{dx^2} = \frac{d\left(1 - \frac{1}{1+x}\right)}{dx}$$
$$= \frac{1}{(1+x)^2}$$
$$> 0 \text{ for } x > -1$$

 \therefore (0,0) is a global minimum turning point as the 2nd derivative is positive, y is continuous and only 1 stationary point.

$$\therefore x - \log_e(1+x) \ge 0 \text{ for } x > -1$$

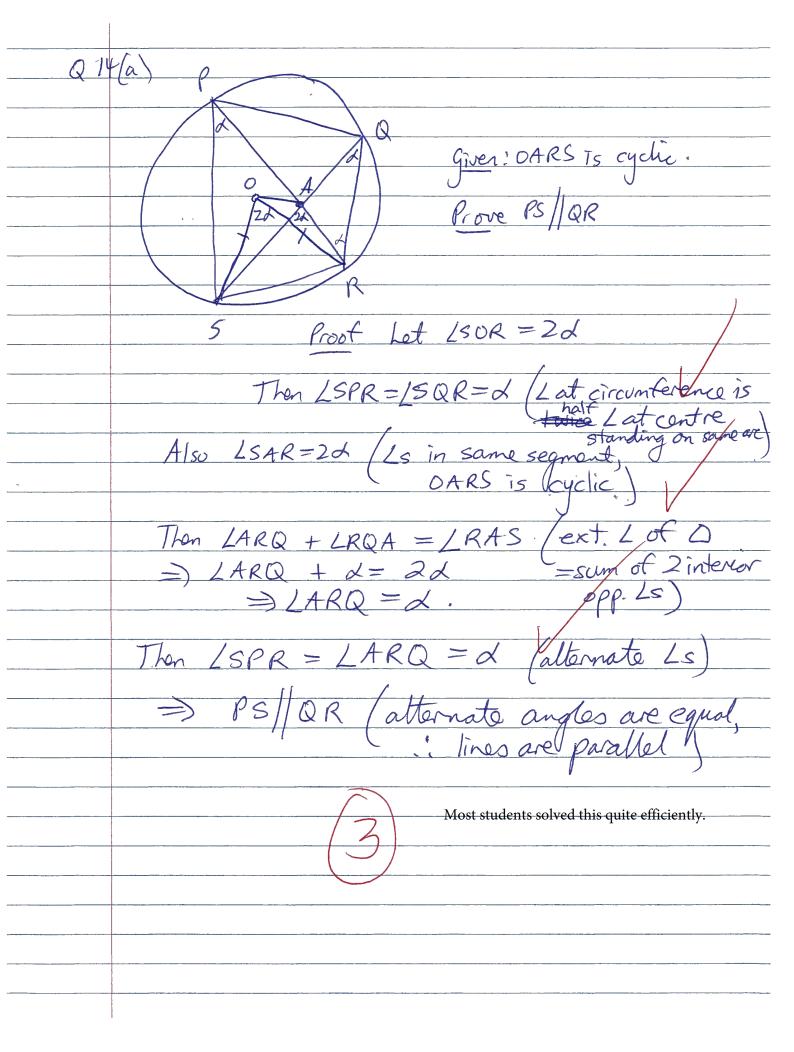
$$\therefore x \ge \log_e(1+x)$$

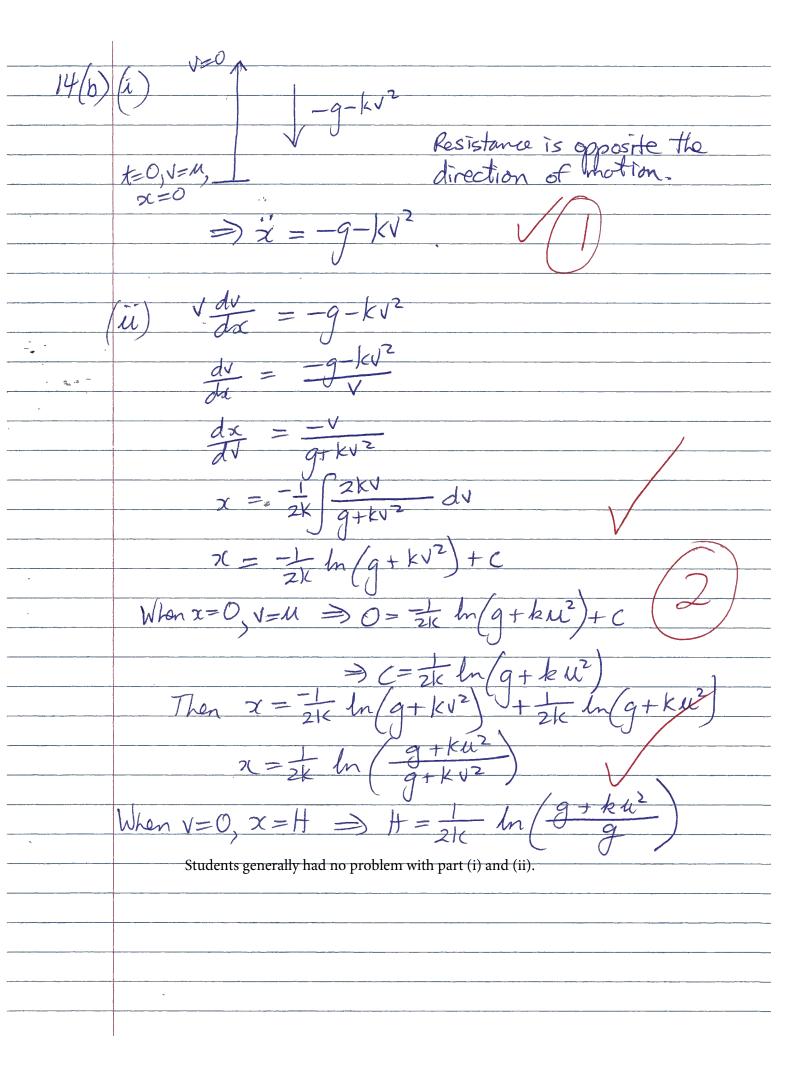
1 mark for finding stationary point (0,0) using calculus.

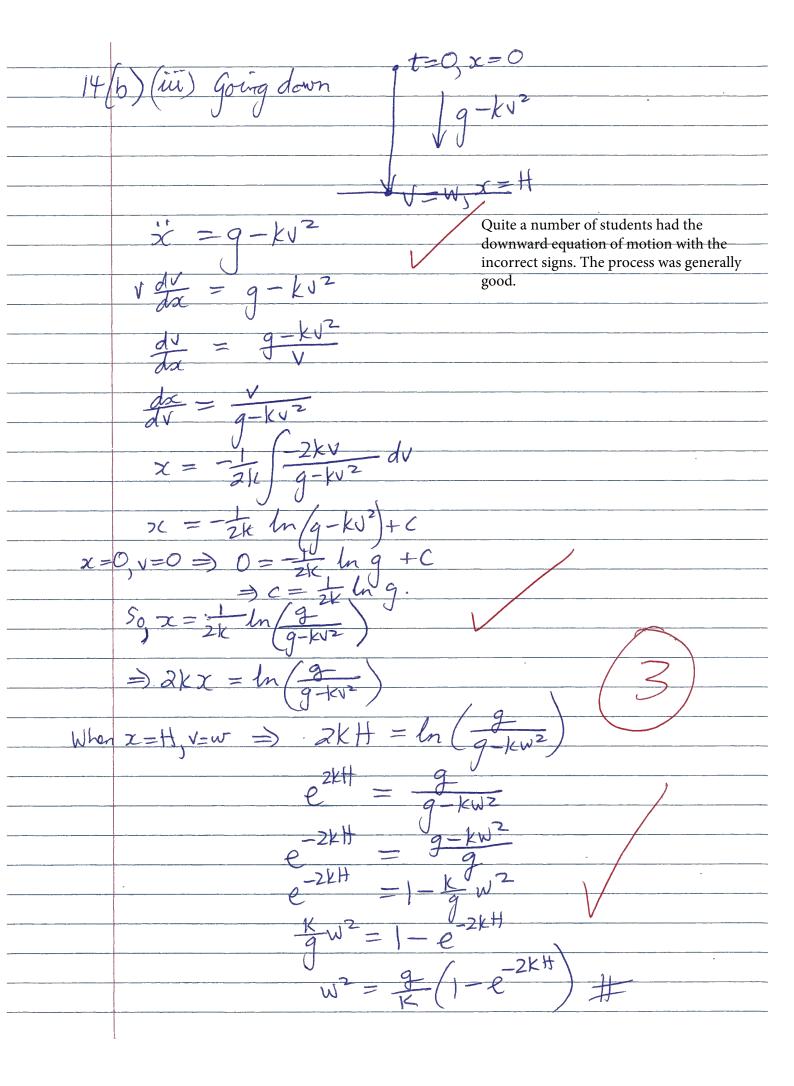
1 mark for using 2^{nd} derivative or table to justify that (0,0) is a minimum turning point and more importantly global minimum.

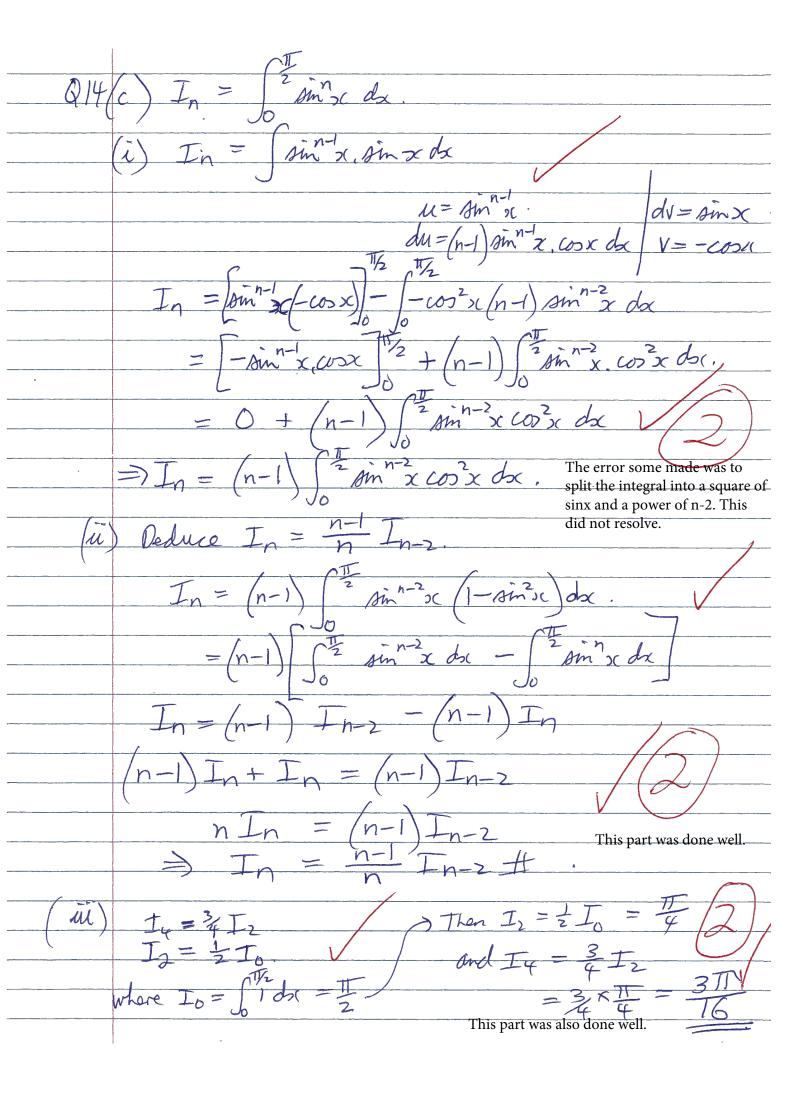
1 mark for a conclusion of why the inequality is true.

OR

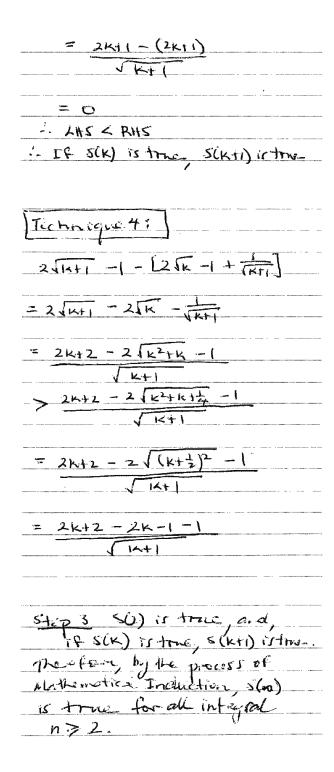

3 marks for


Alternative solution of graphing y = x and $y = \log_e(x)$ must also be accompanied with explanation from calculus that y = x is a tangent to $y = \log_e(x)$ at (0,0). Also students must use calculus to justify why $y = \log_e(x)$ is below y = x.


Candidates whom used the solution provided were more successful in proving the inequality.

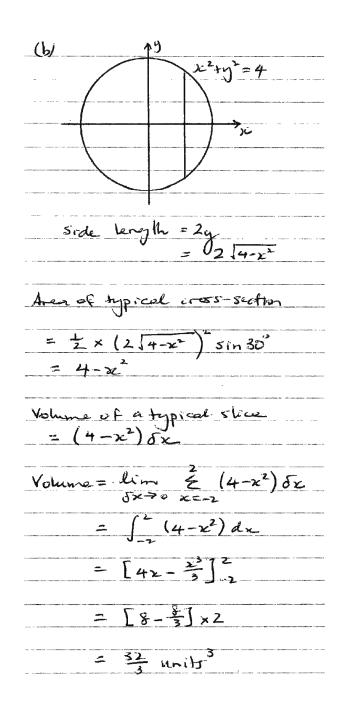

Candidates whom used the alternative solution listed in the marking criteria were generally less successful, as they relied on the graph rather than calculus (as stated in the question) to prove inequality or provided incorrect results on part of the domain.

As the question states to use calculus, candidates did lose marks if not enough was used and/or justified.



Ext 2 Y12 THSC 2019 Q15 solutions

Mean (out of 15): 8.58


S(n)= 大十六十一十六 <255-1
Step 1! Show S(2) is true in 1 + 1/2 < 252 - 1
LHS = 1+1= 1.7071
RHS = 252-1 = 1,8284
5(2) 15 true
Step 2: 1- some SIK) istrue ie 1+ 1 + + + 2 TK-1
Show S(kt1) is true
12 1 1 1 1 1 1 1 1 1 2 (2) [EN]

ie 16K2+16K < 16K2+24K+9
ie 0 < 8kt9
This is a true stratement for K>2. AHS < RHS TE S(K) is true, S(K) is true
Technique 2]
4K2+4K < 4K2+4K+1 2 (K(K+1) < 2K+1 1 2(K+1) < 2K+1 1 2(K+1)-1 1 (K+1) (K+1) = 2(K+1)-1 1 (K+1)
: 2TK -1+ Jung < 21ky1 -1 : LHS < RHS : TP 5(k) is true, 5(ky1) is true
Technique 3: (onsider $2\sqrt{k} - 1 + \sqrt{k} - 2\sqrt{k} + 1$ = $2\sqrt{k} + 1 - 2(k+1)$ $\sqrt{k+1}$ = $2\sqrt{k} - 2k+1$ $\sqrt{k+1}$ = $\sqrt{4k(k+1)} - (2k+1)$ $\sqrt{k+1}$
= JHK+4K - (2K1) JKT1 JKT1 JK+1 - (2K1)

Students found this question quite challenging. Most were able to show that the statement was true for n=2. However, some seemed to feel that it was obvious that $1+\frac{1}{\sqrt{2}}<2\sqrt{2}-1$. Many struggled to demonstrate that the inequality was true in general.

0	0.5	1	1.5	2	2.5	3	Mean
1	8	26	46	15	6	20	1.67

In general, this was done quite well. A common error was to, having determined that the area of a typical cross-section was y^2 , integrate with respect to y.

0	0.5	1	1.5	2	2.5	3	Mean
3	2	2	3	13	9	90	2.67

(c) Total number of arrangements = 6
Probability exactly 4 courses chosen:
Consider covises as ABCDEF Faron F not to be used
For the six people, 3/1/1
are the possible arrangements.
3/11/1:
3/1/1/1: (c3 × 4! Form a Marce the 4 groups group of 3
2/2/1/1:
Place the 4 groups.
of 2 counts by noting 2 groups of 2

No of arrangements
No of arrangements = 20 x4! + 45 x 4!
= 65x 4!
total arrangements of 4 covices = 65 x 41 x 64
= 65 x 4! x 6C4
= 65x 4! x 15
i. Prebability = 65×4! x15
= 1340v
466.56
<u> </u>
648

A challenging question. Students had problems tying together multiple ideas such as choosing 4 out of the 6 courses, that one course was chosen by 3 people or 2 courses were chosen by 2 people and that there were 6^6 possible outcomes if there were no restrictions.

0	0.5	1	1.5	2	2.5	3	Mean
10	12	31	56	3	10	0	1.25

Most students were able to demonstrate this result.

0	0.5	1	1.5	2	Mean
13	11	16	7	75	1.49

(b)(ii) E ntr Crt1
= 1 + 1 + 1 + 1 +
= \(\frac{1}{\cup_{\cip_{\cip_{\cip_{\cip_{\cip_{\cup_{\cup_{\cip}\cup_{\cup_{\cup_{\cup_{\cup_{\cin\cup_{\cip}\cup_{\cip_{\cip\cup_{\cip}\cup_{\cip}\cup_{\cin\cup_{\cip_{\cip_{\cip}\cip}\cip}
= -+1 { 1 1 + 1 }
Acn > 0
$\frac{r+1}{r}$ $\frac{r+1}{r}$ $\frac{r+1}{r}$ $\frac{r+1}{r}$ $\frac{r+1}{r}$ $\frac{3}{r}$ $\frac{3}{r}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
= ½

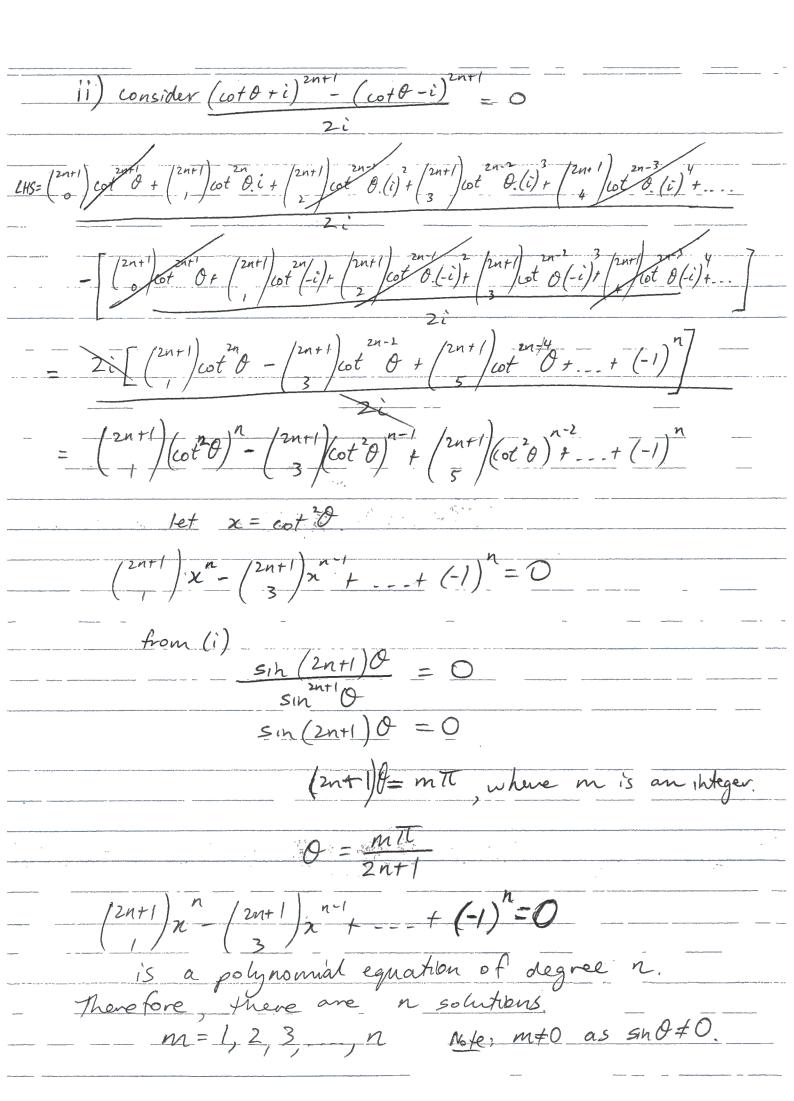
Students who listed the terms of the series and then used the result from part (i) were able to supply the simplified expression in terms of r. A common error for the specific term was not noticing that this expression started at 2 rather than 1.

0	0.5	1	1.5	2	2.5	3	3.5	4	Mean
58	2	10	2	4	5	14	3	24	1.5

Question 16 a) i) a,b,C are positive & unequal (Ja - Jb) >0 a - 2 \(ab + b > 0 a+b > 2 Tab :. a+b > 2 Tab ii) Similarly b+c > 2 sbc C+a > 2/ca (a+b)(b+c)(c+a) > 2/ab, 2/bc. 2/ca :. (a+b)(b+c)(c+a) > 8abc COMMENT; If a>k it can be said that a > k Students were not penalised for not distinguishing between > and >.

b) i) LHS =
$$(cot\theta + i)^{2nt/} - (cot\theta - i)^{2nt/}$$

= $(cos\theta + i)^{2nt/} - (cos\theta - i)^{2nt/}$


= $(cos\theta + isin\theta)^{2nt/} - (cos\theta - i)^{2nt/}$

= $(cos\theta + isin\theta)^{2nt/} - (cos\theta - i)^{2nt/}$

= $(cos\theta + isin\theta)^{2nt/} - (cos(a) + isin(a))^{2nt/}$

= $(cos\theta + isin\theta)^{2nt/} - (cos(a) + isin(a))^{2nt/}$

= $(cos(a) + isin(a))^{2nt/} - (co$

The solutions are $x = \cot^2\left(\frac{m\pi}{2n+1}\right)$, where m = 1, 2, 3, ..., n. COMMENT: This question was answered poorly.

The binomial coefficients suggest a binomial expansion.) expansion Deduce requires us to use pant (i)
This should given us an idea as to what $\frac{111}{m=1} \sum_{m=1}^{\infty} \cot \left(\frac{m\pi}{2n+1} \right) = -\frac{b}{a} \quad (SUM OF ROOTS)$ 12n+1 (2n+1)! 2n(2n-1)(2n-2) 6 (2n=2) = n(2n-1)COMMENT: This was done quite well by the majority of students.

sind < O < tamo (V) sin'O < O' < tan'o f(n)=x is increasing fo-xx0. 5120 > 1 7 Tan20 f(x)= 1 is decreasing for xx0 $cosec^2\theta > \frac{1}{\theta^2} > cot^2\theta$ 1+ cot 20 > 1/2 > cot 20 1_ cot20< \frac{1}{0^2} < 1 + cot20 COMMENT: This was done quite well. Some students forgot to change the direction of the sign when taking the $\cot^{2}\left(\frac{m\pi}{2n+1}\right) < \frac{1}{\left(\frac{m\pi}{2n+1}\right)^{2}} < 1 + \cot^{2}\left(\frac{m\pi}{2n+1}\right)$ $\sum_{m=1}^{n} \frac{1}{\cot\left(\frac{2n+1}{2n+1}\right)} \left(\sum_{m=1}^{n} \frac{1}{\left(\frac{m\pi}{2n+1}\right)^{2}} \left(\sum_{m=1}^{n} \frac{1}{\left(\frac{m\pi}{2n+1}\right)^{2}} \left(\sum_{m=1}^{n} \frac{1}{\left(\frac{m\pi}{2n+1}\right)^{2}} \right)\right)$ $\frac{T^{2}}{(2n+1)^{2}} \leq \cot^{2}\left(\frac{m\pi}{2n+1}\right) < \frac{\pi^{2}}{(2n+1)^{2}} \leq \frac{\pi^{2}}{(2n+1)^{2}}$ $\frac{\pi^{2}}{(2n+1)^{2}} \cdot \frac{n(2n-1)}{3} < \frac{1}{m=1} \times \frac{\pi^{2}}{m^{2}} < \frac{\pi^{2}}{(2n+1)^{2}} \left[n + \frac{n(2n-1)}{3} \right]$ $\frac{\pi^{2}}{3} \cdot \frac{2n^{2} - n}{4n^{2} + 4n + 1} < \frac{5}{m_{21}} < \frac{1}{m^{2}} < \frac{71^{2}}{3} \cdot \frac{2n^{2} + 2n}{4n^{2} + 4n + 1}$ $\frac{\pi^{2}}{3} \frac{2n^{2}-n}{4n^{2}+4n+1} < \frac{\pi}{n+\infty} = \frac{1}{n+\infty} < \frac{1}{n+\infty} = \frac$